Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32.237
Filtrar
5.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38591687

RESUMO

The pervasive presence of nanoplastics (NPs) in the environment has gained increasing attention due to their accumulation in living organisms. These emerging contaminants inevitably interact with extracellular polymeric substances along respiratory or gastrointestinal tracts, and diverse organic coating on the surface of NPs, known as bio- or eco-corona, is formed. Although its impact on altering the NP properties and potential cell internalization has been extensively examined, studies on its role in NP partitioning in the cell membrane are elusive yet. In this work, molecular dynamics is used to investigate the formation of chitosan (CT) corona centered on a polyvinyl chloride (PVC) nanoparticle and the uptake of the resulting complex onto lipid membranes. Coarse-grained models compatible with the newly developed Martini 3.0 force field are implemented for the two polymers employing the atomistic properties as targets in the parameterization. The reliability of the coarse-grained polymer models is demonstrated by reproducing the structural properties of the PVC melt and of solvated CT strands, as well as by determining the conformation adopted by the latter at the NP surface. Results show that the spontaneous binding of CT chains of high and intermediate protonation degrees led to the formation of soft and hard corona that modulates the interaction of PVC core with model membranes. The structural changes of the corona adsorbed at the lipid-water interface enable a subsequent transfer of the NP to the center of the saturated lipid membranes and a complete or partial transition to a snorkel conformation depending on the hydrophilic/hydrophobic balance in the CT-PVC complex. Overall, the computational investigation of the coarse-grained model system provides implications for understanding how the eco-corona development influences the uptake and implicit toxicology of NPs.


Assuntos
Bicamadas Lipídicas , Nanopartículas , Bicamadas Lipídicas/química , Cloreto de Polivinila , Reprodutibilidade dos Testes , Nanopartículas/química , Carboidratos
6.
Nat Commun ; 15(1): 2982, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582785

RESUMO

Paternal diet can influence the phenotype of the next generation, yet, the dietary components inducing specific responses in the offspring are not identified. Here, we use the Nutritional Geometry Framework to determine the effects of pre-conception paternal dietary macronutrient balance on offspring metabolic and behavioral traits in mice. Ten isocaloric diets varying in the relative proportion of protein, fats, and carbohydrates are fed to male mice prior to mating. Dams and offspring are fed standard chow and never exposed to treatment diets. Body fat in female offspring is positively associated with the paternal consumption of fat, while in male offspring, an anxiety-like phenotype is associated to paternal diets low in protein and high in carbohydrates. Our study uncovers that the nature and the magnitude of paternal effects are driven by interactions between macronutrient balance and energy intake and are not solely the result of over- or undernutrition.


Assuntos
Dieta , Pai , Humanos , Masculino , Feminino , Camundongos , Animais , Ingestão de Energia , Nutrientes , Carboidratos , Gorduras na Dieta , Dieta Hiperlipídica
7.
J Agric Food Chem ; 72(14): 7765-7773, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38556742

RESUMO

Climate change affects the content and composition of soil organic carbon (SOC). However, warming-induced changes in the SOC compounds remain unknown. Using nuclear magnetic resonance spectroscopy, molecular mixing models, and Fourier transform ion cyclotron resonance mass spectrometry, we analyzed the variations and relationships in molecular compounds in Mollisol with 10-56 g C kg-1 soil-1 by translocating soils under six climate regimes. We found that increased temperature and precipitation were negatively correlated with carbohydrate versus lipid and lignin versus protein. The former was consistent across soils with varying SOC contents, but the latter decreased as the SOC content increased. The carbohydrate-lipid correlations were related to dithionite-citrate-extractable Fe, while the lignin-protein correlations were linked to changes in moisture and pyrophosphate-extractable Fe/Al. Our findings indicate that the reduction in the mineral protection of SOC is associated with molecular alterations in SOC under warming conditions.


Assuntos
Carbono , Solo , Solo/química , Carbono/metabolismo , Lignina , Lipídeos , Carboidratos
8.
Sci Rep ; 14(1): 8259, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38589560

RESUMO

Microalgae are widely exploited for numerous biotechnology applications, including biofuels. In this context, Chlamydomonas debaryana and Chlorococcum sp. were isolated from Fez freshwater (Morocco), and their growth and lipid and carbohydrate production were assessed at different concentrations of NaCl, NaNO3, and K2HPO4. The results indicate a small positive variation in growth parameters linked to nutrient enrichment, with no considerable variation in carbohydrate and lipid levels in both algae. Moreover, a negative variation was recorded at increased salinity and nutrient limitation, accompanied by lipid and carbohydrate accumulation. Chlorococcum sp. showed better adaptation to salt stress below 200 mM NaCl. Furthermore, its growth and biomass productivity were strongly reduced by nitrogen depletion, and its lipid production reached 47.64% DW at 3.52 mM NaNO3. As for Chlamydomonas debaryana, a substantial reduction in growth was induced by nutrient depletion, a maximal carbohydrate level was produced at less than 8.82 mM NaNO3 (40.59% DW). The effect of phosphorus was less significant. However, a concentration of 0.115 mM K2HPO4 increased lipid and carbohydrate content without compromising biomass productivity. The results suggest that growing the two Chlorophyceae under these conditions seems interesting for biofuel production, but the loss of biomass requires a more efficient strategy to maximize lipid and carbohydrate accumulation without loss of productivity.


Assuntos
Clorofíceas , Microalgas , Fósforo , Lipídeos/química , Salinidade , Nitrogênio , Marrocos , Cloreto de Sódio , Carboidratos , Água Doce , Biomassa , Biocombustíveis
9.
Bioresour Technol ; 399: 130642, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561154

RESUMO

Aqueous galactose solutions containing eggshell was heated at 120 °C to produce calcium supplements containing rare sugars. Galactose was isomerized to rare sugars with improving rare sugar yields compared to those without eggshell. Organic acids were also formed as byproducts during the reaction. These acids were neutralized by dissolving eggshells with increasing the calcium ion concentration in the solution. When eggshell components (calcium carbonate, magnesium carbonate, or calcium phosphate) were used for the treatment, rare sugars were also formed. Especially, addition of magnesium carbonate improved rare sugar yield, but byproduct formation became more pronounced. Eggshells used in the treatment were used for repeated treatments. When eggshells were used three times, rare sugar yield changed only slightly but the selectivity of rare sugars improved significantly. By these processes, we obtained an aqueous solution of rare sugars containing calcium ion at 295 mg/L, which has potential as ingredients for dietary supplements.


Assuntos
Cálcio , Magnésio , Açúcares , Animais , Galactose , Casca de Ovo , Carboidratos , Água
10.
Sci Adv ; 10(16): eadl3419, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640242

RESUMO

Plant biomass conversion by saprotrophic fungi plays a pivotal role in terrestrial carbon (C) cycling. The general consensus is that fungi metabolize carbohydrates, while lignin is only degraded and mineralized to CO2. Recent research, however, demonstrated fungal conversion of 13C-monoaromatic compounds into proteinogenic amino acids. To unambiguously prove that polymeric lignin is not merely degraded, but also metabolized, carefully isolated 13C-labeled lignin served as substrate for Agaricus bisporus, the world's most consumed mushroom. The fungus formed a dense mycelial network, secreted lignin-active enzymes, depolymerized, and removed lignin. With a lignin carbon use efficiency of 0.14 (g/g) and fungal biomass enrichment in 13C, we demonstrate that A. bisporus assimilated and further metabolized lignin when offered as C-source. Amino acids were high in 13C-enrichment, while fungal-derived carbohydrates, fatty acids, and ergosterol showed traces of 13C. These results hint at lignin conversion via aromatic ring-cleaved intermediates to central metabolites, underlining lignin's metabolic value for fungi.


Assuntos
Agaricus , Carbono , Lignina , Lignina/metabolismo , Carbono/metabolismo , Micélio/metabolismo , Carboidratos , Aminoácidos
11.
Xenotransplantation ; 31(2): exen12855, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38602029

RESUMO

Carbohydrate-antigens widely existed on glycoproteins and glycosphingolipids of all mammalian cells play a crucial role in self-defense and immunity. Xeno-reactive antibodies included in natural human sera play a protecting role in an acute phase-rejection of xenotransplantation. In this study, we investigated the effect of an alteration of glycosylation-pattern, caused by human sialyltransferases such as hST3Gal II or hST6GalNAc IV, on human serum mediated cytotoxicity in pig kidney PK15 cells. From LDH cytotoxicity assay, cytotoxicity to human serum was significantly increased in hST3Gal II and hST6GalNAc IV-transfected PK15 cells, as compared to the control. In the hST6Gal I-carrying cells, the cytotoxicity to human serum was rather decreased. Moreover, flow cytometry analysis revealed that an alteration of pig glycosylation-pattern by hST3Gal II or hST6GalNAc IV influences on a binding of human IgM or IgG, respectively, in pig kidney cells, regardless of Gal antigen alteration. Finally, we found that hST6GalNAc IV contributed to increase of terminal disialylated tetrasaccharide structure, disialyl T antigen, as evidenced by increase of the MAL II lectin binding capacity in the hST6GalNAc IV-transfected PK15 cells, compared with control. Therefore, our results suggest that carbohydrate antigens, such as disialyl T antigen, newly synthesized by the ST3Gal II- and ST6GalNAc IV are potentially believed to be new xeno-reactive elements.


Assuntos
Sialiltransferases , Transplante Heterólogo , beta-Galactosídeo alfa-2,3-Sialiltransferase , Animais , Humanos , Antígenos Virais de Tumores , Carboidratos , Mamíferos/metabolismo , Sialiltransferases/genética , Sialiltransferases/química , Sialiltransferases/metabolismo , Suínos
12.
PLoS One ; 19(4): e0297217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635692

RESUMO

This study focuses on isolated thermophilic Bacillus species' adaptability and physiological diversity, highlighting their ecological roles and potential industrial applications. We specifically investigated their capacity to thrive in extreme conditions by examining their environmental tolerances and adaptations at the metabolic and genetic levels. The primary objective is to evaluate the suitability of these species for biotechnological applications, considering their resilience in harsh environments. We conducted a comparative analysis of the environmental adaptability parameters for various Bacillus species. This included examining growth temperature ranges, pH tolerance, oxygen requirements, carbohydrate fermentation patterns, colony morphology, enzymatic activities, and genetic properties. Controlled laboratory experiments provided the data, which were then analyzed to determine patterns of adaptability and diversity. The research revealed that Bacillus species could endure temperatures as high as 73°C, with a generally lower growth limit at 43°C. However, strains TBS35 and TBS40 were exceptions, growing at 37°C. Most strains preferred slightly alkaline conditions (optimal pH 8), but TBS34, TBS35, and TBS40 exhibited adaptations to highly alkaline environments (pH 11). Oxygen requirement tests classified the species into aerobic, anaerobic, and facultative aerobic categories. Genetic analysis highlighted variations in DNA concentrations, 16s rRNA gene lengths, and G+C content across species. Although glucose was the primary substrate for carbohydrate fermentation, exceptions indicated metabolic flexibility. The enzymatic profiles varied, with a universal absence of urease and differences in catalase and oxidase production. Our findings underscore thermophilic Bacillus species' significant adaptability and diversity under various environmental conditions. Their resilience to extreme temperatures, pH levels, varied oxygen conditions, and diverse metabolic and genetic features emphasize their potential for biotechnological applications. These insights deepen our understanding of these species' ecological roles and highlight their potential industrial and environmental applications.


Assuntos
Bacillus , RNA Ribossômico 16S/genética , Temperatura Alta , Oxigênio , Carboidratos , Filogenia
13.
BMC Plant Biol ; 24(1): 233, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561647

RESUMO

BACKGROUND: The study focuses on the global challenge of drought stress, which significantly impedes wheat production, a cornerstone of global food security. Drought stress disrupts cellular and physiological processes in wheat, leading to substantial yield losses, especially in arid and semi-arid regions. The research investigates the use of Spirulina platensis aqueous extract (SPAE) as a biostimulant to enhance the drought resistance of two Egyptian wheat cultivars, Sakha 95 (drought-tolerant) and Shandawel 1 (drought-sensitive). Each cultivar's grains were divided into four treatments: Cont, DS, SPAE-Cont, and SPAE + DS. Cont and DS grains were presoaked in distilled water for 18 h while SPAE-Cont and SPAE + DS were presoaked in 10% SPAE, and then all treatments were cultivated for 96 days in a semi-field experiment. During the heading stage (45 days: 66 days), two drought treatments, DS and SPAE + DS, were not irrigated. In contrast, the Cont and SPAE-Cont treatments were irrigated during the entire experiment period. At the end of the heading stage, agronomy, pigment fractions, gas exchange, and carbohydrate content parameters of the flag leaf were assessed. Also, at the harvest stage, yield attributes and biochemical aspects of yielded grains (total carbohydrates and proteins) were evaluated. RESULTS: The study demonstrated that SPAE treatments significantly enhanced the growth vigor, photosynthetic rate, and yield components of both wheat cultivars under standard and drought conditions. Specifically, SPAE treatments increased photosynthetic rate by up to 53.4%, number of spikes by 76.5%, and economic yield by 190% for the control and 153% for the drought-stressed cultivars pre-soaked in SPAE. Leaf agronomy, pigment fractions, gas exchange parameters, and carbohydrate content were positively influenced by SPAE treatments, suggesting their effectiveness in mitigating drought adverse effects, and improving wheat crop performance. CONCLUSION: The application of S. platensis aqueous extract appears to ameliorate the adverse effects of drought stress on wheat, enhancing the growth vigor, metabolism, and productivity of the cultivars studied. This indicates the potential of SPAE as an eco-friendly biostimulant for improving crop resilience, nutrition, and yield under various environmental challenges, thus contributing to global food security.


Assuntos
Secas , População da Ásia Setentrional , Spirulina , Triticum , Triticum/metabolismo , Água/metabolismo , Carboidratos , Grão Comestível/metabolismo
14.
Cell Commun Signal ; 22(1): 203, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566182

RESUMO

BACKGROUND: The metabolically demanding nature of immune response requires nutrients to be preferentially directed towards the immune system at the expense of peripheral tissues. We study the mechanisms by which this metabolic reprograming occurs using the parasitoid infection of Drosophila larvae. To overcome such an immune challenge hemocytes differentiate into lamellocytes, which encapsulate and melanize the parasitoid egg. Hemocytes acquire the energy for this process by expressing JAK/STAT ligands upd2 and upd3, which activates JAK/STAT signaling in muscles and redirects carbohydrates away from muscles in favor of immune cells. METHODS: Immune response of Drosophila larvae was induced by parasitoid wasp infestation. Carbohydrate levels, larval locomotion and gene expression of key proteins were compared between control and infected animals. Efficacy of lamellocyte production and resistance to wasp infection was observed for RNAi and mutant animals. RESULTS: Absence of upd/JAK/STAT signaling leads to an impaired immune response and increased mortality. We demonstrate how JAK/STAT signaling in muscles leads to suppression of insulin signaling through activation of ImpL2, the inhibitor of Drosophila insulin like peptides. CONCLUSIONS: Our findings reveal cross-talk between immune cells and muscles mediates a metabolic shift, redirecting carbohydrates towards immune cells. We emphasize the crucial function of muscles during immune response and show the benefits of insulin resistance as an adaptive mechanism that is necessary for survival.


Assuntos
Proteínas de Drosophila , Resistência à Insulina , Vespas , Animais , Fatores de Transcrição/metabolismo , Proteínas de Drosophila/metabolismo , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Drosophila/genética , Músculos , Vespas/metabolismo , Larva/metabolismo , Imunidade , Carboidratos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo
16.
Sci Rep ; 14(1): 7918, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575633

RESUMO

Generalist species, which exploit a wide range of food resources, are expected to be able to combine available resources as to attain their specific macronutrient ratio (percentage of caloric intake of protein, lipids and carbohydrates). Among mammalian predators, the red fox Vulpes vulpes is a widespread, opportunistic forager: its diet has been largely studied, outlining wide variation according to geographic and climatic factors. We aimed to check if, throughout the species' European range, diets vary widely in macronutrient composition or foxes can combine complementary foods to gain the same nutrient intake. First, we assessed fox's intake target in the framework of nutritional geometry. Secondly, we aimed to highlight the effects of unbalanced diets on fox density, which was assumed as a proxy for Darwinian fitness, as assessed in five areas of the western Italian Alps. Unexpectedly, the target macronutrient ratio of the fox (52.4% protein-, 38.7% lipid- and 8.9% carbohydrate energy) was consistent with that of hypercarnivores, such as wolves and felids, except for carbohydrate intakes in urban and rural habitats. The inverse relation between density and the deviation of observed macronutrient ratios from the intake target suggests that fox capability of surviving in a wide range of habitats may not be exempt from fitness costs and that nutrient availability should be regarded among the biotic factors affecting animal abundance and distribution.


Assuntos
Ecologia , Raposas , Animais , Ecossistema , Carboidratos
17.
J Proteome Res ; 23(4): 1471-1487, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38576391

RESUMO

In arthropods, hemolymph carries immune cells and solubilizes and transports nutrients, hormones, and other molecules that are involved in diverse physiological processes including immunity, metabolism, and reproduction. However, despite such physiological importance, little is known about its composition. We applied mass spectrometry-based label-free quantification approaches to study the proteome of hemolymph perfused from sugar-fed female and male Aedes aegypti mosquitoes. A total of 1403 proteins were identified, out of which 447 of them were predicted to be extracellular. In both sexes, almost half of these extracellular proteins were predicted to be involved in defense/immune response, and their relative abundances (based on their intensity-based absolute quantification, iBAQ) were 37.9 and 33.2%, respectively. Interestingly, among them, 102 serine proteases/serine protease-homologues were identified, with almost half of them containing CLIP regulatory domains. Moreover, proteins belonging to families classically described as chemoreceptors, such as odorant-binding proteins (OBPs) and chemosensory proteins (CSPs), were also highly abundant in the hemolymph of both sexes. Our data provide a comprehensive catalogue of A. aegypti hemolymph basal protein content, revealing numerous unexplored targets for future research on mosquito physiology and disease transmission. It also provides a reference for future studies on the effect of blood meal and infection on hemolymph composition.


Assuntos
Aedes , Humanos , Animais , Masculino , Feminino , Aedes/metabolismo , Açúcares/metabolismo , Hemolinfa/metabolismo , Proteômica , Carboidratos
18.
Pestic Biochem Physiol ; 200: 105827, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582591

RESUMO

In addition to the acute lethal toxicity, insecticides might affect population dynamics of insect pests by inducing life history trait changes under low concentrations, however, the underlying mechanisms remain not well understood. Here we examined systemic impacts on development and reproduction caused by low concentration exposures to cyantraniliprole in the fall armyworm (FAW), Spodoptera frugiperda, and the putative underlying mechanisms were investigated. The results showed that exposure of third-instar larvae to LC10 and LC30 of cyantraniliprole significantly extended larvae duration by 1.46 and 5.41 days, respectively. Treatment with LC30 of cyantraniliprole significantly decreased the pupae weight and pupation rate as well as the longevity, fecundity and egg hatchability of female adults. Consistently, we found that exposure of FAW to LC30 cyantraniliprole downregulated the mRNA expression of four ecdysteroid biosynthesis genes including SfNobo, SfShd, SfSpo and SfDib and one ecdysone response gene SfE75 in the larvae as well as the gene encoding vitellogenin (SfVg) in the female adults. We also found that treatment with LC30 of cyantraniliprole significantly decreased the whole body levels of glucose, trehalose, glycogen and triglyceride in the larvae. Our results indicate that low concentration of cyantraniliprole inhibited FAW development by disruption of ecdysteroid biosynthesis as well as carbohydrate and lipid metabolism, which have applied implications for the control of FAW.


Assuntos
Ecdisteroides , Inseticidas , Pirazóis , ortoaminobenzoatos , Animais , Spodoptera , Metabolismo dos Lipídeos , Larva , Inseticidas/toxicidade , Carboidratos
19.
Eur J Med Res ; 29(1): 227, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609963

RESUMO

BACKGROUND AND AIM: Previous observational investigations have indicated a potential association between relative dietary macronutrient intakes and atrial fibrillation and flutter (AF) risk. In this study, we employed Mendelian Randomization (MR) to evaluate the presence of causality and to elucidate the specific causal relationship. METHODS: We employed six, five, and three single nucleotide polymorphisms (SNPs) as instrumental variables for relative carbohydrate, protein, and fat intake, identified from a genome-wide association study that included 268,922 individuals of European descent. Furthermore, we acquired summary statistics for genome-wide association studies on AF from the FinnGen consortium, which involved 22,068 cases and 116,926 controls. To evaluate the causal estimates, we utilized the random effect inverse variance weighted method (IVW) and several other MR methods, including MR-Egger, weighted median, and MR-PRESSO, to confirm the robustness of our findings. RESULTS: Our analysis indicates a convincing causal relationship between genetically predicted relative carbohydrate and protein intake and reduced AF risk. Inverse variance weighted analysis results for carbohydrates (OR = 0.29; 95% CI (0.14, 0.59); P < 0.001) and protein (OR = 0.47; 95% CI (0.26, 0.85); P = 0.01) support this association. Our MR analysis did not identify a significant causal relationship between relative fat intake and AF risk. CONCLUSION: Our study provides evidence supporting a causal relationship between higher relative protein and carbohydrate intake and a lower risk of atrial fibrillation (AF).


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Ingestão de Alimentos , Carboidratos
20.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612540

RESUMO

Carbohydrate-based surfactants are amphiphilic compounds containing hydrophilic moieties linked to hydrophobic aglycones. More specifically, carbohydrate esters are biosourced and biocompatible surfactants derived from inexpensive renewable raw materials (sugars and fatty acids). Their unique properties allow them to be used in various areas, such as the cosmetic, food, and medicine industries. These multi-applications have created a worldwide market for biobased surfactants and consequently expectations for their production. Biobased surfactants can be obtained from various processes, such as chemical synthesis or microorganism culture and surfactant purification. In accordance with the need for more sustainable and greener processes, the synthesis of these molecules by enzymatic pathways is an opportunity. This work presents a state-of-the-art lipase action mode, with a focus on the active sites of these proteins, and then on four essential parameters for optimizing the reaction: type of lipase, reaction medium, temperature, and ratio of substrates. Finally, this review discusses the latest trends and recent developments, showing the unlimited potential for optimization of such enzymatic syntheses.


Assuntos
Lipase , Tensoativos , Ésteres , Carboidratos , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...